5 SIMPLE TECHNIQUES FOR تقنية التعلم العميق

5 Simple Techniques For تقنية التعلم العميق

5 Simple Techniques For تقنية التعلم العميق

Blog Article



تتدرب لوغاريتمات التعلم بدون إشراف على البيانات غير المسماة. ويمكنها فحص البيانات الجديدة لتحاول تأسيس روابط ذات مغزى بين المدخلات والمخرجات مسبقة التحديد. وتستطيع أن تكشف عن الأنماط وتصنِّف البيانات. على سبيل المثال، يمكن للوغاريتمات التعلم بدون إشراف تجميع المقالات الإخبارية من المواقع الإخبارية المختلفة تحت فئات شائعة، مثل الرياضة والجريمة، إلخ.

وتمتد تطبيقات التعلم العميق عبر مجالات مُتنوِّعة، من الرعاية الصحيّة والتمويل إلى الترفيه والبحث العلمي، مما يُحدث ثورةً في الطريقة التي نتعامل بها مع البيانات.

طبقة المُخرجات في شبكة التعلم العميق هي الطبقة النهائيّة التي تنتج مُخرجات الشبكة أو تنبؤاتها بناءً على بيانات الإدخال التي تم معالجتها.

تسمى هذه العملية بالتعلم الخاضع للإشراف. في التعلم الخاضع للإشراف، لا تتحسن دقة النتائج إلا إذا كان لديك مجموعة بيانات واسعة ومتنوعة بما فيه الكفاية. على سبيل المثال، قد تحدد الخوارزمية القطط السوداء بدقة ولكنها قد تخفق في تحديد القطط البيضاء لأن مجموعة بيانات التدريب تحتوي على صور أكثر للقطط السوداء.

هذه مجرد بعض الاستخدامات الشائعة للتعلم العميق في تحليل البيانات. يجب أن نلاحظ أن هناك إمكانيات أكثر للاستفادة من تحليل البيانات بواسطة التعلم العميق في المستقبل، حيث ستستمر التقنيات في التطور والتحسين.

تستخدم الشبكات العصبية في التعلم العميق لتحليل الصور والفيديوهات، وتصنيفها وتفسيرها بشكل مفصل، مما يمكنها من تطوير تطبيقات مثل التعرف على الوجوه نور الامارات والعواطف.

قد يكون من الصعب تفسير النتائج بشكل صحيح وإزالة عدم اليقين بدون مساعدة الخبراء.          

التعلم العميق هو مجموعة فرعية من أساليب التعلم الآلي التي يشار إليها أيضًا باسم التعلم التمثيلي. يعد التعلم التمثيلي أو تعلم الميزات أسلوبًا يمنح الجهاز القدرة على اكتشاف العلاقات تلقائيًا من البيانات الأولية.

تعمل الشبكات العصبونية في التعلم العميق على تحليل البيانات بطرق لا تعتمد على القواعد المحددة مسبقًا. بدلاً من ذلك، تستخدم الشبكات العصبونية القدرات الحسابية والتعلمية العميقة لتحليل البيانات واستخلاص النماذج والأنماط المختلفة.

كلية علوم الحاسوب وتكنولوجيا المعلومات / جامعة القادسية / العراق موقع الويب فيسبوك انستقرام

يركز النهج الحتمي في حجم البيانات التي يتم جمعها ودقتها، لذا الكفاءة تكون لها الأولوية عن عدم اليقين. من ناحية أخرى، العملية غير الحتمية (أو الاحتمالية) مصممة للتعامل مع عامل الاحتمال.

مقالات علم البيانات علم البيانات باستخدام خارطة طريق بايثون: خطوة بخطوة

فهرسة العبارات الأساسية التي تدل على المشاعر، مثل التعليقات الإيجابية والسلبية على وسائل التواصل الاجتماعي

على سبيل المثال، سوف تنظر إلى شكل عينيه وأذنيه، وحجمه، وعدد الأرجل، ونوع الفراء. قد تحاول تحديد الأنماط، مثل ما يلي:

Report this page